Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.03.01 Т	еория металлургических процессов
наименование дисципл	лины (модуля) в соответствии с учебным планом
Направление подготовки / с	пециальность
	22.04.02 Металлургия
Направленность (профиль)	
22.04.02.02	Металлургия цветных металлов
Форма обучения	очная
Год набора	2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
д-р хим.наук, Профессор, Белоусов	a H.B.
попуность инициалы фамилия	

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель изучения дисциплины — приобретение и углубление знаний в области теории металлургических процессов, необходимых для грамотного, научно обоснованного подхода к анализу результатов исследований металлургических систем и технологических ситуаций.

1.2 Задачи изучения дисциплины

- приобретение общекультурных и профессиональных компетенций, которые помогут использовать теорию металлургических процессов при описании многокомпонентных систем, использовать термодинамический метод в металлургических технологиях; дадут возможность эффективно применять теорию в профессиональной деятельности.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ПК-4: Способен проводить рас	четы и делать выводы при решении задач,								
относящихся к профессиональной деятельности									
ПК-4: Способен проводить	критерии реакционной способности веществ и их								
расчеты и делать выводы при	устойчивости								
решении задач, относящихся к	особенности кинетики многокомпонентных систем								
профессиональной	использовать математический аппарат в								
деятельности	термодинамических расчетах и обработке								
	кинетических данных								
	предсказывать поведение металлургических систем и								
	процессов на основе данных физико-химического								
	анализа								
	навыками оценки прочности соединений в								
	различных условиях								
	способностью проводить расчеты и делать выводы								
	при анализе равновесных и неравновесных								
	процессов в металлургических системах								
ПКО-4: Способен решать зада	чи, относящиеся к профессиональной								

ПКО-4: Способен решать задачи, относящиеся к профессиональной деятельности, применяя знания в области моделирования, математики, естественных и прикладных наук

ПКО-4: Способен решать	методику проведения термодинамических расчетов							
задачи, относящиеся к	процессов, протекающих в пиро- и							
профессиональной	гидрометаллургических системах							
деятельности, применяя	особенности кинетики процессов в							
знания в области	многокомпонентных металлургических системах							
моделирования, математики,	роль поверхностных явлений в металлургических							
естественных и прикладных	системах							
наук	использовать математический аппарат для обработки							
	термодинамических и кинетических данных							
	использовать законы физической химии для анализа							
	металлургических процессов							
	связывать технологические процессы и объекты							
	металлургического производства со свойствами							
	металлов, сырья и расходных материалов							
	навыками термодинамических расчетов процессов,							
	протекающих в металлургических системах							
	навыками оценки глубины и скорости протекания							
	процессов							
	способностью оценивать и предсказывать поведение							
	систем в зависимости от внешних параметров							
	(температуры, давления)							
ПКО-9: Способен применять знания теории и технологии металлургических								

ПКО-9: Способен применять знания теории и технологии металлургических процессов для решения задач, относящихся к профессиональной деятельности

	1 1
ПКО-9: Способен применять	закономерности, лежащие в основе
знания теории и технологии	металлургических процессов
металлургических процессов	сущность процессов, имеющих место на этапах
для решения задач,	металлургических переделов
относящихся к	возможности теории металлургических процессов в
профессиональной	плане анализа реакционной способности
деятельности	металлургических систем
	применять знания теории металлургических
	процессов для решения задач в области первичной и
	вторичной переработки металлургического сырья
	навыками физико-химического анализа
	металлургических систем и процессов

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,5 (54)	
занятия лекционного типа	0,5 (18)	
практические занятия	1 (36)	
Самостоятельная работа обучающихся:	2,5 (90)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п Модули, темы (разделы) дисциплины		Занятия лекционного - типа		Занятия семин Семинары и/или Практические		нарского типа Лабораторные работы и/или		Самостоятельная работа, ак. час.	
	Всего	В том числе в ЭИОС	зан: Всего	В том числе в ЭИОС	Практ Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. Te	рмодинамика и кинетика пирометаллургических проце	ссов							
	1. Термодинамика и кинетика пирометаллургических процессов	2							
	2. Восстановление металлов из оксидов: свойства газовых атмосфер, термодинамика восстановления оксидов, карботермия, металлотермия	2							
	3. Окисление металлов. Окислительное рафинирование: кинетика окисления металлов, окислительное рафинирование, раскисление металлов	2							
	4. Функции и свойства шлаков. Методы определения активности. Ликвационное рафинирование, методы перекристаллизации: ликвационные процессы, направленная кристаллизация и зонная плавка	2							
	5. Процессы испарения, возгонки и конденсации: теория процессов испарения, возгонки и конденсации, перегонка металлов, ректификация	2							

6. Определение типа диссоциации соединений: расчет константы равновесия процесса диссоциации, определение давления диссоциации		4			
7. Расчет давления диссоциации оксидов металлов в системах с растворами: Рассчитываются термодинамические характеристики процесса диссоциации оксидов металлов для случаев образования металлического и шлакового растворов		4			
8. Определение окислительной способности газовой фазы: проводится анализ влияния температуры на смещение равновесий газовых реакций, рассчитываются константы равновесия процессов с участием СО и водорода		2			
9. Термодинамические расчеты окислительновосстановительных реакций получения металлов (карботермия, металлотермия): решение задач на определение возможности карботермического и металлотермического восстановления металлов, расчет констант равновесия процессов восстановления		2			
10. Кинетика процессов восстановления: решение задач на определение продолжительности процесса, давления пара летучих продуктов реакции, энергии активации процесса по кинетическим данным		4			
11. Расчет остаточного содержания никеля в меди при окислительном рафинировании: рассчитывается константа равновесия реакции взаимодействия никеля с оксидом меди; содержание оксида меди в меди; мольная доля никеля после рафинирования и массы компонентов в моле расплава		2			

12. Определение выхода и состава продуктов ликвации: на основании диаграмм состояния металлических систем определяется состав равновесных фаз при заданной температуре, по правилу рычага рассчитываются массы фаз, выход продуктов ликвации		2			
13. Расчеты процессов испарения, возгонки и конденсации: решаются задачи на определение температуры начала конденсации металла, извлечение металла в конденсат, потери металла из-за неполноты конденсации		2			
14. Самостоятельная работа заключается в проработке теоретического курса и выполнении домашних заданий.				52	
2. Термодинамика и кинетика гидрометаллургических проц	ессов				
1. Выщелачивание: термодинамика процессов выщелачивания, кинетика выщелачивания	4				
2. Выделение металлов из растворов различными способами: выделение малорастворимых соединений, процессы кристаллизации из растворов, выделение металлов электролизом, осаждение металлов и оксидов из растворов восстановлением водородом и другими газами, цементация	4				
3. Термодинамика процессов выщелачивания, сопровождающихся химическими реакциями: Рассчитываются термодинамические характеристики процессов выщелачивания, минимальный расход реагента, проводится анализ диаграмм Пурбе		2			

		2				
		2				
		2				
		2				
		2				
		2				
					38	
18		36			 90	
	18	18	2 2 2 2	2 2 2 2 2		2 2 2 2 2 2 2 38

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Исаева Л. А. Теория электрометаллургических процессов: учеб.-метод. пособие для самост. работы студентов спец. 150102.65 «Металлургия цветных металлов».(Красноярск: СФУ).
- 2. Напалков В. И., Махов С. В., Бобрышев Б. Л., Моисеев В. С., Напалков В. И. Физико-химические процессы рафинирования алюминия и его сплавов: учеб.-справочное пособие(Москва: Теплотехник).
- 3. Вольдман Г. М., Зеликман А. Н. Теория гидрометаллургических процессов: учебное пособие для вузов по спец. "Химическая технология редких металлов и материалов на их основе" (Москва: Интермет инжиниринг).
- 4. Погодаев А. М., Погодаева И. А. Теория пирометаллургических процессов: [сборник задач](Красноярск: СФУ).
- 5. Погодаев А. М., Погодаева И. А. Основы теории пирометаллургических процессов: учеб. пособие для студентов (бакалавров, преподавателей) спец. 110200 "Металлургия цветных металлов" (Красноярск: ГУЦМиЗ).
- 6. Белоусова Н. В. Теория пирометаллургических процессов: учеб.-метод. пособие для лаб. работ [для студентов спец. 150400.62.02 "Металлургия цветных металлов"](Красноярск: СФУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. В учебном процессе по данной дисциплине используются стандартные программы Microsoft Office и Internet.
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Доступ к информационным справочным системам осуществляется через Научную библиотеку СФУ (http://bik.sfu-kras.ru).

2.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Реализация программы предусматривает наличие помещений для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования. Аудитории должны быть укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления информации.